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Context: Clonal hematopoiesis (CH), characterized by the clonal proliferation of mutant 
hematopoietic cells, is frequently observed in older individuals. It is widely recognized 
that ageing leads to somatic mutations in hematopoietic stem cells, increasing the risk of 
developing various diseases later in life. However, the impact of these clonal hematopoiesis-
related mutations on the activation and regulation of the immune response remains uncertain. 
Evidence acquisition: To address this knowledge gap, a thorough review of the existing 
literature on clonal hematopoiesis and immune dysregulation was conducted. Relevant studies 
were systematically searched and their key findings were carefully analyzed to provide a 
comprehensive overview.

Results: The review shows that mutations associated with clonal hematopoiesis have a 
significant impact on the modulation of immune responses in the body. These mutations are 
found to contribute to immune dysregulation, which has important implications for disease 
progression in the elderly. 

Conclusion: This review highlights the importance of studying immune dysregulation in the 
context of clonal hematopoiesis. By unravelling the relationship between CH-related mutations 
and immune responses, we can improve our understanding of disease progression in the elderly 
and identify promising therapeutic targets. This knowledge can inform the development of 
innovative interventions for improved disease management.
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Introduction 

ematopoietic stem cells (HSCs) are char-
acterized by their ability to generate them-
selves and differentiate into multiple cell 
types in response to extracellular signals 
[1]. Preserving hematopoietic stem cells 

in the non-dividing phase reduces energy demand, prevents 
oxidative damage, and provides a pool of stem cell storage 
for sustaining human life [1]. The intricate balance of qui-
escence, self-renewal, and differentiation of hematopoietic 
stem cells is governed by intracellular mechanisms, includ-
ing transcription, epigenetics, metabolic changes, and cell 
cycle regulators [2]. On the other hand, stressors such as 
infection and pathological or physiological conditions (ag-
ing) affect the self-renewal of hematopoietic stem cells 
[3]. It is essential to understand the sustaining hemostasis 
of hematopoietic stem cells under normal conditions or its 
disruption under stress conditions. Constant cell contact 
with DNA-damaging factors leads to the accumulation of 
somatic mutations in the cell during aging [4-6].

Several mutations, termed driver mutations, provide a 
competitive advantage to the cell, leading to the emergence 
of a dominant cell clone, under certain conditions, such as 
chronic inflammation or environmental stimuli [7]. Then, 
the ancestors of this dominant cell clone can undergo other 
mutations, potentially culminating in cancer. So, in the ab-
sence of cancer and within the normal tissue, we will see 
cell clone proliferation. Clonal hematopoiesis (CH) is a 
term used to describe the clonal expansion of HSCs with 
somatic mutations frequently resulting from aging [8]. CH 
has been recognized as a risk factor for the formation of 
blood malignancies, especially myeloid neoplasms, such 
as acute myeloid leukemia (AML), myelodysplastic syn-
drome (MDS), and myeloproliferative neoplasms (MPN) 
[9-11]. Evidence suggests an association between clonal 
hematopoiesis and other illnesses, such as cardiovascular 
and autoimmune diseases [12]. 

Clonal hematopoiesis of indeterminate potential 
(CHIP) is the new term defined by the existence of leuke-
mia-associated driver mutation with an allelic frequency 
of at least 2%, coupled with the absence of hematologic 
malignancies [13]. Chemotherapy and radiotherapy are 
important risk factors in the development of the CHIP [8, 
11, 14]. This potential has also been observed in patients 
undergoing autologous bone marrow transplantation due 
to non-myeloid blood malignancies such as multiple my-
eloma or lymphoma [13, 15]. CHIP has been identified 
in other hematologic diseases, such as hereditary bone 
marrow failure syndrome and aplastic anemia [11, 14].

Common driver mutations in CHIP

Most mutations in clonal hematopoiesis are heterozy-
gous and associated with protein function loss. In gen-
eral, three groups of genes are involved in the formation 
of clonal hematopoiesis: Epigenetic regulators, includ-
ing DNA methyltransferase 3A (DNMT3A), Ten-eleven-
translocation 2 (TET2), and additional sex combs-like 
1 (ASXL1); transcription factors; and genes responding 
to DNA damage, including tumor protein 53 (TP53), 
and protein phosphatase, Mg+2/Mn2+ dependent 1D 
(PPM1D). It has already been shown that mutations in 
epigenetic, splicing, transcription, and signal transduc-
tion factors are related to the development of clonal he-
matopoiesis [16-19]. 

DNMT3a mutations

Epigenetic regulatory mutations are the predominant 
type of clonal hematopoiesis mutations, comprising 
50% of clonal hematopoiesis associated with DNMT3a 
variants [20]. Mutations in the DNMT3a gene and de-
creased activity are associated with enhanced hemato-
poietic stem cell regeneration. An essential cause of this 
phenomenon is the reduced methylation of regulatory 
regions of genes related to the self-renewal property of 
hematopoietic stem cells, including Meis1, Evi1, and 
HOXA9 [7, 21].

The range of mutations observed in clonal hemato-
poiesis differs from those seen in myeloid leukemia. 
The R882 mutation hotspot of DNMT3a is a predomi-
nant mutation in acute myeloid leukemia, which, with a 
dominant negative effect, even in a heterozygous state, 
reduces DNMT3a activity drastically. Other mutations in 
the DNMT3a gene lower its activity by up to 50% of the 
average level [22]. 

TET2 mutation

TET2 is another epigenetic regulator whose mutations 
are common in patients with clonal hematopoiesis. TET2 
appears as a DNA demethylating factor by converting 
5-methyl cytosine to 5-hydroxymethyl cytosine [17]. 
TET2 mutations act as loss-of-function mutations, and 
unlike DNMT3a, they are involved in the self-renewal 
of hematopoietic stem cells and hematopoietic progeni-
tor cells. In its normal state, TET2 sometimes alters gene 
expression, leading to differentiation and inhibition of 
self-renewal [20].

H
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ASXL1 mutation

ASXL1, as an epigenetic regulator, is critical in con-
trolling gene expression by affecting histone methyla-
tion [23]. ASXL1 mutations in patients with myeloid 
malignancies predict poor prognosis. ASXL1 mutations 
can also affect HSCs’ regenerative capacity. Previous 
studies, however, demonstrate the inhibition of HSCs’ 
differentiation in Asxl1-deficient or mutant mice. ASXL1 
mutations stimulate abnormal proliferation of HSCs by 
disrupting epigenetic alterations, potentially contributing 
to CH in the long run [24]. 

PPM1D and TP53

TP53 and PPM1D (a P53-induced serin phosphatase) 
are stress-response regulators essential in cell cycle 
control, DNA repair, and tumor metabolism [25]. Ex-
ogenous selective pressures such as chemotherapy and 
radiation are higher relative risks in CH progression [26, 
27]. The increased mutation rates in TP53 and PPM1D 
are observed in patients with therapy-related AML and 
MDS [28]. Studies reveal a significant increase in cancer 
patients treated with chemotherapy and radiation who 
harbor CH-related TP53 or PPM1D mutations [29].

Immune landscape of clonal hematopoiesis

Clonal hematopoiesis, characterized by somatic mu-
tations in hematopoietic stem cells, can affect immune 
cells, such as macrophages, monocytes, neutrophils, 
and lymphocytes [30]. Under the influence of CH mu-
tations, immune cells undergo qualitative [31, 32] and 
quantitative changes by affecting the differentiation of 
hematopoietic progenitor cells into specific lineages [33, 
34]. These immune effector cells can negatively impact 
many disease processes, particularly those associated 
with chronic inflammation [12]. 

Objectives 

Here, we review the immune landscape of age-associ-
ated clonal hematopoiesis and discuss the role of dysreg-
ulated immune responses that contribute to the outcome 
of CH-related disorders.

Evidence acquisition and results

Dysregulation of innate immune response in 
clonal hematopoiesis

The immune cells are part of the hematopoietic sys-
tem. Alteration in immune functioning related to aging 
may have a role in clonal hematopoiesis and CH-related 

disorders. Evidence from both human and animal models 
suggests that increased inflammation, “inflammageing,” 
occurs during aging and correlates with changes in HSCs, 
including a decline in regenerative capacity and differ-
entiation towards myeloid cells [35, 36]. Several studies 
support the increased level of inflammatory cytokines, 
such as interleukin (IL)-6, tumor necrosis factor (TNF-α), 
IL-1, and transforming growth factor-β (TGF-β) in aged 
mice bone marrow [37-40]. Accordingly, old mice treated 
with inhibitors of IL-1β and TNF-β responded with a sig-
nificant reduction in bone marrow lymphopoiesis [41]. A 
study of older people demonstrated that serum levels of 
IL-6 and TNF-α were significantly higher in individuals 
with CH than those without it [42].

Data indicate that chronic inflammation can promote 
clonal hematopoiesis by selecting mutated hematopoi-
etic stem cells in the context of aging [43]. The clono-
genic potential of TET2-mutant hematopoietic stem cells 
in an in vitro inflammatory environment such as TNF-α 
has been reported in mice and humans, associated with 
myeloid deviation and evasion of apoptosis [44]. In line 
with this finding, Cai et al. reported that TET2-mutant 
hematopoietic stem and progenitor cells express high 
levels of IL-6 under inflammatory stress (with lipopoly-
saccharide [LPS] stimulation), promoting mutant HSC 
proliferation and survival [45]. A similar observation 
was reported regarding other HSC mutations. Activity 
of inflammatory signaling pathways in monocytes and T 
cells increased in subjects with DNMT3 mutations [46]. 
Secretion of IL-6, TNF-α, and IL-13 was significantly 
higher in mouse mast cells lacking DNMT3a compared 
to wild-type cells [31]. 

As previously mentioned, inflammatory cytokines are 
associated with the proliferation of mutated hematopoi-
etic stem cells in the clonal hematopoiesis context. How-
ever, TET2 and DNMT3 mutants exhibit different cyto-
kine expressions; serum IL-6 increases in people with 
CH carrying TET2 mutation, whereas serum TNFα lev-
els are elevated in those with DNMT3A mutation [42]. 

Dysregulation of innate immune and inflammatory sig-
naling pathways has been observed in people with clonal 
hematopoiesis and hematologic diseases like myelodys-
plastic syndromes [47]. Recent studies have focused 
on the role of mutation-driven clonal hematopoiesis in 
innate immune cell function [31, 42, 48]. Macrophage 
cells, or phagocytic cells, are specialized components of 
innate and adaptive immune systems found in bone mar-
row and tissues. Most knowledge about the association 
between inflammation and CH was obtained from stud-
ies on mouse macrophages and monocytes [49-52]. In 
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other words, the inflammatory profile in macrophages 
carrying mutations of CH and their role in diseases dur-
ing aging have been well described in mice models. So, 
in addition to the lack of human studies supporting this 
data, the exact role of other immune cell types affected 
by these mutations has remained poorly understood. 

In studies of mice with mutations in the TET2 gene, 
the increased expression of NLR family pyrin domain 
containing 3 (NLRP3) inflammasome and IL-1, IL-6 in-
flammatory cytokines was shown in macrophages and 
monocytes, respectively [48-52]. Also, the increased ex-
pression of IL-6 in Tet2-deficient macrophage was dem-
onstrated in patients with myelodysplastic syndromes 
and chronic myelomonocytic leukemia [48]. Frisch et 
al. uncovered that macrophages within the bone marrow 
of aged mice have a defect in the clearance of apoptotic 
neutrophils and induce platelet bias in HSC via increased 
production of IL-1β [38]. In addition, evidence supports 
that DNMT3A deficiency may alter innate immune func-
tion, including enhanced inflammatory activation of 
mast cells and inhibition of immunosuppressive function 
in suppressive myeloid cells [31, 53]. Several studies 
have shown that clonal hematopoiesis bearing DNMT3A 
and TET2 mutations contributes to the development and 
progression of multiple diseases through inflammatory 
mechanisms [14]. Recent studies have shown that muta-
tions in TET2 and DNMT3A reduce inflammation and 
produce type I interferon, respectively [54, 55]. 

Beyond macrophages, neutrophils are typical innate 
cells that compromise 40%-70% of human white blood 
cells. These cells are involved in the immune response 
against extracellular pathogens by producing reactive 
oxygen species and neutrophil extracellular traps. Some 
studies propose alterations in neutrophil function in the 
context of CH that contribute to CH-related disease pro-
gression [56-58]. A recent study of patients with AAV 
(anti-neutrophil cytoplasmic antibody [ANCA]-associ-
ated autoimmune vasculitides) indicates that oxidative 
burst of neutrophils was significantly decreased in AAV 
patients with CH compared to those without it [56]. 
Also, the direct association between dysregulated NET 
formation in neutrophils with Jack2 mutation, as one of 
the most common mutations in CH and increased risk of 
thrombosis, has been reported in patients with myelo-
proliferative neoplasm which further supports the idea of 
potential correlation between CH and clinical and patho-
logical outcome of autoimmune diseases [57]. Howev-
er, the impact of other mutations, such as DNMT3 and 
TET2, on neutrophils remains to be elucidated.

In sum, it can be hypothesized that mutated hemato-
poietic stem cells differentiate into leukocytes, includ-
ing monocytes, macrophages, and lymphocytes, which 
are functionally impaired and release increased levels of 
proinflammatory cytokines. CH-induced inflammation 
creates a microenvironment favorable for clonal devel-
opment and aggravates systemic inflammation, which 
can help the progression of age-related diseases. A com-
prehensive understanding of the mechanism of immune 
system dysfunction and inflammatory processes in clon-
al hematopoiesis holds promise for the early detection 
and prevention of hematologic malignancies and other 
associated disorders. 

Dysregulation of adaptive immune response in 
clonal hematopoiesis

However, CH mutations are also known to have asso-
ciations with myeloid and lymphoid malignancies [59-
61]. A recent cohort study of 109 patients with T-cell 
lymphomas demonstrated that TET2 mutations in T cells 
skew deviation toward Th follicular (TFH) cells related 
to unfavorable disease outcomes [60]. Likewise, Tet2 
knockdown mice exhibited the increased expansion of 
Th follicular cells in the spleen of aged mice compared 
with young mice [62]. In separate experiments, the in-
creased generation of CD8+ memory T cells and func-
tional suppression of regulatory T cells were shown to 
be affected by TET2 loss of function mutations [63, 64]. 
DNMT3 mutant CD8+ T cells exhibit reduced exhaus-
tion in response to chronic stimulation [65]. Increased 
expression of IFN-γ and high Th17/Tregulatory ratio 
have been reported in DNMT3 mutant T cells [33, 66].

However, the effects of CH mutations on B cells, as one 
of the crucial components of adaptive immune response, 
remain relatively less explored. Knockout mouse studies 
showed that alterations in TET2 impacted the B cells’ 
development and activation, resulting in abnormalities in 
B1 cell subsets, inhibition in plasma cell differentiation, 
and enhanced risk of cancer [67-69]. In contrast, loss of 
DNMT3 in mice B cells led to increased activation of 
germinal center B cells and plasma cell differentiation 
upon in vivo stimulation with PE-CFA antigen [70].

The potential role of clonal hematopoiesis has been 
shown in the progression of hematologic malignancies, 
cardiovascular disease, and autoimmune disease in older 
adults [11, 50]. As described above, some CH-related mu-
tations disturb the immune system’s homeostasis, which 
can play a role in developing CH-associated diseases. For 
example, experimental models in cardiovascular disease 
demonstrated the infiltration of the heart with Tet2-defi-
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cient inflammatory cells followed by enhanced expres-
sion of IL-1β and deterioration in heart function [49, 52]. 
Consistently targeting and inhibiting inflammatory path-
ways by NLRP3 inhibitor ameliorated atherosclerotic le-
sions mediated by clonal expansion of mutated immune 
cells [71]. Moreover, studies investigating the relationship 
between other CH-related mutations like DNMT3, JAK2 
mutations, and coronary heart diseases showed an inflam-
matory shift in macrophages and T cells of heart failure 
patients carrying DNMT3 mutation, which may contrib-
ute to the exacerbation of their disease [46, 72].

Mouse melanoma models found that deletion of TET2 
resulted in restraint immunosuppressive function of 
macrophages and myeloid-derived suppressor cells and 
improved antigen-specific T cell response [73]. Subse-
quent investigations in clinical settings support CH’s 
positive role in promoting anti-tumor immunity. Patients 
with hematologic malignants who were transplanted 
with DNMT3A mutated HSC showed reduced incidence 
of relapse or progression of tumor and increased risk 
of GVHD (graft versus host disease) [15]. This out-
come may be because mutated clones might promote 
an immune response against normal and tumor cells. 
In CAR-T cell immunotherapy of patients with chronic 
lymphocytic leukemia, it was shown that TET2 deletion 
in CAR-T cells changed the differentiation of T cells to 
central memory T cells, with increased cytokine expres-
sion more effective in inhibiting tumor cells [74].

Therapeutic approaches 

Up to now, several treatment strategies have been de-
veloped for specific CH-related mutations. For example, 
Tet2-deficient mice treated with high vitamin C had 
promising results like restoration of aberrant self-renew-
al in HSC of treated mice and improved blood hemosta-
sis [75]. In a study on aged Asxl1-mutant mice, treatment 
by rapamycin (mTOR inhibitor) restrained the cell divi-
sion of impaired HSCs and led to the prevention of CHIP 
progression [76]. A recent study has reported that inhibit-
ing the innate immune signaling pathway may affect my-
eloid leukemia [77]. Moreover, targeting age-associated 
alterations in bone niches, such as the TGF-β signaling 
pathway, has been suggested as a promising therapeutic 
option for CHIP [37]. Above all, targeting inflammatory 
molecules more closely related to CH’s consequences 
might help treat CH-related diseases, particularly athero-
sclerosis [50]. However, therapies to promote the func-
tion of the aging immune system have become attractive 
modalities to suppress the mutant clones; whether such 
specific treatments will be clinically possible or not re-
mains to be elucidated.

Conclusion 

CHIP has been reported to be prevalent among older 
adults, but it hurts health. However, whole exome se-
quencing in healthy adults demonstrated that CH occurs 
in 1% of the population younger than 40. However, only 
a fraction of individuals may reach a condition where 
the mutant clone expands significantly. These findings 
suggest that in addition to well-known mutations for 
CH, non-mutational mechanisms such as epigenetic 
alterations and environmental agents can be associated 
with the expansion of mutant clones in CH. So, further 
research is needed to find a cause-effect relationship be-
tween these factors and the development of CH. In the 
years to come, several surprising associations between 
these mutations and aging diseases will be revealed. 
Conducting biobank research will also provide more 
insights into diagnosing other factors that affect CHIP 
pathogenicity.

Evidence supports that inflammation and dysregulation 
of immune cell pathways contribute to the progression 
of clonal hematopoiesis and associated diseases, includ-
ing cancers, atherosclerosis, autoimmune diseases, etc. 
However, the extent of immune dysfunction in a hemato-
poietic system with clonal expansions of mutated hema-
topoietic cells and the precise mechanisms of mutations 
leading to dysregulation in immune cells are largely un-
known. Detailed phenotypic and functional studies are 
needed to shed more light on the role of dysregulated 
immune response on the development of clonal hemato-
poiesis and related diseases, which can help in designing 
novel therapeutic approaches.
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